
 1

Signal Finder Design Documentation

Team Donut

Sadaf Amouzegar
Alejandro Carbonara

Angela Gong
Kalpana Suraesh

Jessica Yu

1 Introduction

Everyone has faced the common problem of not having cell-phone service when they
need it. When a person is inside a building that has poor reception, it would be very
convenient to be able to find the place where his or her reception would be best in a
short amount of time. With this in mind, our project aims to solve this problem.

1.1 Goal

Our goal is to create an application that can conveniently inform the user where
their cell phone reception. In order to do so, we will collect signal data via
distributed methods from various users and phone carriers using an Android
application. Once we have gathered enough data points, we will be able to see where
reception is best by filtering and computing upon our data set. We will proceed to
use that information to our advantage, and if we are in need of better cell phone
signal, we would be able to use the Android application and a web UI to find the
optimal spot to use our cell phone.

2 Data Design

2.1 Data Format

Data points will be stored in the phone memory and on a database in the following
format.

Parameter Storage Format Description

clientId String/VARCHAR(40) An opaque, hashed string of the phone's
IMEI. This is constant for all requests
from a single device.

carrier String/VARCHAR(40) The phone carrier of the client (e.g. “ATT”)

 2

Parameter Storage Format Description

latitude double/NUMERIC(7, 4) The latitude, in degrees.

longitude double/NUMERIC(7, 4) The longitude, in degrees.

accuracy double/NUMERIC(7, 4) Accuracy of the measurement in meters.

phoneType int/INTEGER The phone network type, which is one of
[0, 1, 2, 3]. (e.g. CDMA, GSM)

time java.sql.Timestamp/
TIMESTAMP

The timestamp at which the measurement
was taken.

signal int/INTEGER Signal strength at the location in dBm.

Table 1. Data storage format

2.2 Data Storage on Android App

Within the Android app, data points are stored in a text file called data.txt. After
data has been uploaded to the server, it will be deleted from the phone to save
memory. Current data is stored in the cache and is written to memory as soon as it
is processed by the phone. Up to 500 data points will be stored on the phone at once,
and if more data points are inserted, then those 500 points will be written to the
database before new points are recorded.

2.3 Data Storage on Database

2.3.1 MySQL Database
For our design we will use a MySQL database to store the data points. The benefits
of using a MySQL database is the ability to use primary keys to uniquify data
points, as well as foreign keys to limit the kind of data inserted into the database.
MySQL also allows for different ways to filter the data which will be beneficial for
both the mobile and web interfaces.

The data will be stored on the server at mysql.super-magician.com at cs3donut.

2.3.2 Data Storage
Data is stored in two tables on the database. data contains all of the data points
stored as tuples. Each tuple contains (clientId, carrier, latitude, longitude,
accuracy, phoneType, time, signal). Its primary key is (clientId, latitude,
longitude). This makes it such that each user can only submit one signal per
location, since we do not want to overflow the database with unnecessary data. It
contains a foreign key to the table valid_clients.

valid_clients contains tuples with all of the (clientId).

 3

3 Architecture Design

Data is processed in the following format, as can be seen by Figure 1. First
collection of signal information and GPS location is done by the mobile app. It is
then uploaded to the server and inserted into the database. Finally, the results are
retrieved from the database, processed, and displayed in a heat map interface.

Figure 1. The data collection process.

3.1 Data Collection

Collection of signal strengths is done via an extension of the PhoneStateListener
and an implementation of the LocationListener. Using the listeners, the phone is
able to retrieve information about the current signal strength as well as its GPS
location. When the user’s location changes (via a prompt to the onLocationChanged
method) or the signal changes (via a prompt to the onSignalStrengthChanged
method), then the app will collect the new data. In the event that the GPS is
disabled (a call to onProviderDisabled), then no data will be collected until the
GPS is activated (a call to onProviderEnabled).

At each instance a Location and signal strength (an int) is collected, which will be
further processed by the mobile app to be uploaded.

3.2 Data Transfer

3.2.1 Client Registration
Prior to uploading data to the server, the client must register their hashed clientId
with the database. This is done via HTTP POST request to the server at
http://www.anjoola.com/donut/register.php.

3.2.2 Transfer to Database
Upon accumulation of data, the data points in the file data.txt will be uploaded to
the database. First the app calculates how many data points are stored in the file
and sets a variable numData to that number.

 4

Data is submitted via HTTP POST request to the server at
http://www.anjoola.com/donut/submit.php. The HTTP parameters will be formatted
as strings, the following are first submitted: (clientId, carrier, numData) using
an array of NameValuePairs. This will indicate to the server the source of the data
and the number of data points to expect.

For each data point to transfer, the following parameters are sent: (latitude$i,
longitude$i, accuracy$i, phoneType$i, time$i, signal$i), where the $i
indicates the index of the data point (ranges from 0 to numData – 1).

3.2.3 Server Response
Depending on the type of input it receives, the server will respond with either an
“HTTP/1.1 200 OK” header, indicating that the upload of data was a success, or a
“HTTP/1.1 400 Bad request” header, indicating that the upload was a failure. The
following will also be outputted:

SignalFinderAPI=1.0
<errorCode>
<message>

Error Code Message

0 OK, no error

1 Bad clientId token

2 Timestamp out of bounds

3 Parse error

4 Malformed parameters (missing record or fields)

5 Other error

Table 2. Possible error codes and messages.

A 200 response means that the request was recorded successfully. A 400 error code
implies that an error prevented the request from being handled. After this error
code, the user can try to resubmit data again.

Errors can occur if some field is not specified, fields are out of bounds (e.g. the
latitude entered is -300, which is impossible), invalid parameters are entered (e.g.
“foo” for the signal strength instead of an integer), or the clientId is not in the list
of valid_clients.

A list of the parameters and their ranges can be seen on the next page in Table 3.

 5

Parameter Valid Range Parameter Valid Range

latitude -90 to 90 phoneType 0, 1, 2, 3

longitude -180 to 180 time A valid UNIX timestamp

accuracy Greater than 0 signal -113 to -51

Table 3. Parameters and valid ranges.

3.2.4 Privacy Concerns
There may be concerns involving using the phone’s IMEI as a way to identify users.
This problem is resolved in the following process. At the first installation of the app,
the app gets the phone’s IMEI, prepends it with a random salt, and converts it to
base 64. This is then stored in a file called phone_id.txt, and the real IMEI is never
stored in any way. This new clientId is then uploaded to the server.

During data transfers, this hashed phone ID (clientId) is sent to the server along
with data points, who then checks it against their list of valid clientIds to see if this
user is allowed to upload data. If so, then this user’s data is inserted into the
database. Otherwise, the data is rejected.

This is a secure form of data uploads because the client’s real IMEI is never
transferred in any form, and invalid users are not allowed to enter any data.

4 User Interface

4.1 Mobile UI

The mobile interface consists of two parts: one to show the user the current collected
data, and one to show the direction of better signal strength.

4.1.1 Data Collection
Upon the start of the application the user is able to choose a sleep interval and
press the Start Collection button, as can be seen by Figure 2. An Ongoing
notification will appear in the Android status bar indicating that the running
service has begun (see Figure 4). This signal collection service then runs in the
background, and the user may run other processes in the meantime.

As the SignalStrengthListener listens for new information about the signal
strength and GPS location, various components in the UI are updated accordingly.
A TextView displaying the live data is updated with the newest information, and
another TextView displays the current database status and whether or not the
previous data points were successfully uploaded to the server. This can be seen in
Figure 3.

 6

Figures 2 and 3. Mobile app upon startup, and collecting data.

Figure 4. Ongoing app notification.

 7

4.1.2 Better Signal Finder
While collecting data, the app will also display the direction where a better signal
can be found. This is based on previously collected data in the database. The mobile
app queries the database for signals and locations in an area 22m by 22m around
the user, and finds the location with the best signal strength within that area.
Using some calculations, the app will point to the direction of better signal and
indicate this to the user.

The latitude and longitude of the area around the user is calculated as
(current_latitude ± 0.0001, current_longitude ± 0.0001). An example of
this display can be seen in Figure 3.

4.1.3 Battery Considerations
Collecting data and querying the server for better signal strength can cause a drain
on the battery of the phone. In order to remedy this, users are able to, from a drop-
down menu (Figure 5), choose how often they want to collect signal data.

Figure 5. Drop-down menu to select interval between data collection.

In between data collection periods, the app will go into a low-power mode in which it
does nothing until a timer interrupt causes it to wake up and begin collecting data.

 8

The calculations for the better signal is done only every minute, since it is unlikely
that the user will move far or fast enough such that the signal strength can change
significantly within a minute.

The user may elect to stop all data collection and better signal calculations by
pressing the Stop Collection button.

4.2 Website Frontend

4.2.1 Raw Data Dump
The website queries the MySQL database, pulls the results, and outputs it into a
table. As data collection occurs, data is constantly being uploaded onto the
database. Data points will therefore appear live on the data table. Columns that
will be displayed include the time, carrier, latitude, longitude, and signal strength.

The user may also choose to filter the data by a minimum or maximum latitude
and/or longitude, and can sort the table in order of carrier, location, or signal
strength.

4.2.2 Heat Map
Data points will be displayed in a heat map format using the Google Maps API.
Depending on the strength of the signal, various locations on the map will be
colored. The user is then able to click on these shaded points to view more detailed
information on the average signal strength at that point and the coordinates at
which the data was taken from.

Figure 6. Heat map interface on website.

 9

The data can also be filtered by making HTTP GET requests to
http://www.anjoola.com/donut/data.php with the following parameters:

Parameter Details
minLatitude Lesser latitude of the retrieval area, in degrees.
minLongitude Lesser longitude of the retrieval area, in degrees.
maxLatitude Greater latitude of the retrieval area, in degrees.
maxLongitude Greater longitude of the retrieval area, in degrees.
carrier (Optional parameter). The carrier.
phoneType (Optional parameter). The phoneType, one of 1, 2, 3.
clientId (Optional parameter). Records from only this client retrieved.

Table 4. Parameters for HTTP GET request.

The user may also choose to filter the data by a minimum or maximum latitude
and/or longitude, and can sort the table in order of carrier, location, or signal
strength.

