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• Current implementations of data-stream 
management systems (DSMS) mainly focus on 
supporting low-latency, high-volume data 
processing

• Not many practical implementations of 
differentially-private streaming algorithms

Motivation

Goals
• Implement DSMS with that supports various 

privacy-preserving operators
• Use push-based model for computing results 

of query via asynchronous message-passing

Features
• Typical relational operators found in RDBMS
• Stream-to-stream operations including 

selection, projection, and aggregation
• Windowing operators based on number of 

rows and time
• Privacy-preserving SUM, COUNT, and AVERAGE

Research Goals

Case Study | Household and Neighborhood Electricity Demand
Using model from Richardson, et al, Domestic electricity use: A high-resolution energy demand model.

Some improvements and additional features:
• Parser and CQL – Support for CQL (continuous 

query language) for ease of querying and 
interacting with the system.

• Additional Private Operators – Support more 
complex operators, such as variance.

• Load-shedding – Reduce the latency by 
randomly dropping tuples from the stream.

Future Work

DB

Uses an 𝜺𝜺-Differentially Private Mechanism –
when run on two neighboring streams, behaves 
about the same on both sets. The presence or 
absence of a single data point should not affect 
the final output.
 𝜺𝜺 – the privacy parameter. A smaller 𝜀𝜀

increases the amount of noise added.

Privacy Implementation

1. Can we hide household electricity demand?

• With smart metering, an adversary could easily 
tell when someone is home

• Want to make electricity demand 𝜀𝜀-differentially 
private to protect this information

2. What is a good value for the privacy parameter, 𝜺𝜺?

• Error amounts drawn from Laplace distribution

• Need to find the “sweet spot” of noise to add: too much and 
data is meaningless, too little and activity is still obvious

• Our chosen 𝜀𝜀 = 0.01

3. How accurate is the privacy-
preserved neighborhood electricity 
demand?

• Simulated 30 households based on 
5 distinct usage and occupancy 
patterns

• In expectation, the sum of error 
amounts is zero

4. What is the cost of privacy?

• Compute the difference integral between the actual and privacy-
preserved electricity demand

• Use a battery to increase electricity demand, and use a generator to 
decrease electricity demand

• Assuming generator runs for 81.25 kWh/gal with cost of diesel at 
$4.025/gal, and cost of electricity is 15.34¢/kWh per day (in California).
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