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1 Introduction

1.1 Motivation

Our project was to use Amazon’s Elastic MapReduce to quickly compute PageRanks
of a large number of nodes. This was to be done in a span of 10 days with limited
testing on Amazon, but unlimited local testing. The goal was to get an algorithm that
would correctly rank the top 10 nodes of a graph in a short amount of time, beating the
undergraduate and graduate teaching assistant teams in the CS/EE 144 class.

1.2 Team

1.2.1 Team Name

Our team name is strange, but that’s because “Engaging a Squid’s Horn” is an anagram
of our last names: Ding, Gong, Qian, and Suraesh!

1.2.2 Team Member Roles

We divided the work as follows. All of the team members helped in coming up with and
debugging various PageRank algorithms, as well as documentation.

• David Ding

– Generated random graphs for testing purposes.

– Took data sets online and parsed them into the proper format.

• Angela Gong

– Created a script to automate uploading and submitting files to EC2.

– Analyzed and plotted rank data to determine better stopping criteria.

• Mike Qian

– Wrote the initial implementation of the PageRank algorithm.

– Improved code quality and efficiency.

• Kalpana Suraesh

– Optimized the implementation of PageRank to stop when the list of top N
nodes stops changing.

– Improved stopping criterion code.

2 Approach and Optimizations

2.1 Introduction

Instead of using matrix multiplication, which would be costly and take forever with a
very large data set, we decided to use the iterative approach of computing PageRanks.
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2.2 PageRank Algorithm

2.2.1 The Algorithm

The algorithm is split into two parts. The first part is a (possibly) multi-task PageRank
algorithm which processes input from stdin and outputs it into a format that is better
for PageRank calculations. The second part is a processing algorithm, which runs as a
single task and does the final output (if done), or formats the output for another run.

Figure 1: Steps in an iteration of the PageRank MapReduce algorithm.

The algorithm runs in many iterations; each iteration goes through the data once, and if
more processing is required, the algorithm goes through another iteration. Details about
the steps are below:

• pagerank-map: We receive the results of the previous iteration as inputs for the
next iteration. Our results are formatted to include the relative ranks of the nodes.
The very first iteration is detected by the mapper to be the first, at which point
ranks are initialized to −1. Each received tuple is then in the format (node id,

pagerank, prev relrank, outdegree, dests), where pagerank is the current
PageRank value, prev relrank is the relative rank of the node in the last itera-
tion, outdegree is its outdegree, and dests contains all the adjacent nodes. The
received tuple is re-emitted for the reducer, and for each node d ∈ dests, a tuple
of the form (d, added rank) is emitted, where added rank is pagerank divided
by outdegree. This is the first part of the iterative PageRank algorithm.

• pagerank-reduce: The input from the mapper has format (node id, values),
where values can be in two formats: either some float fi that represents an amount
to be added to the current PageRank value, or a tuple of the form (relative rank,

pagerank, outdegree, dests), defined as above. The new pagerank for each
node is then calculated by adding the sum of the flows fi, scaled by a factor of α,
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and (1−α), as per the PageRank algorithm. For each input, the reducer finally out-
puts a tuple of the form (node id, prev relrank, new pagerank, outdegree,

dests).

• process-map: Nothing is done here, because we cannot guarantee that only one
mapper will be called, and we need to have knowledge about the entire data set
to make a decision at this stage.

• process-reduce: This is the main optimization logic. After several runs, we
determined that the best stopping criterion is to stop after the set of nodes with
the top 10 ranks stays the same for two successive iterations. We implement this
by enforcing a fixed-size min-heap on top of Pythons heapq. The max size of the
heap is 10; once the heap is full, for each node that is read in, we compare the new
nodes PageRank value with the PageRank value at the top of the min-heap. If
the new node has a higher page rank, then we remove a node from the min-heap,
and add the new node to the heap. Once all nodes are received, process-reduce
checks if any of the ranks of nodes in the top 10 have changed; if they have not,
we are done and output the final results. If they were any changes, then we must
run another iteration. In this case, we emit the top 10 nodes with ranks values of
0-9, and all the other nodes with a rank value of −1.

2.2.2 Changing the Damping Factor α

After reading some papers, we realized that changing α might cause the results to con-
verge faster, and still give results similar to that of the standard value α = 0.85. We
looked at the Caltech web graph to see what would happen if we changed α. Our runs
for α > 0.85 included our early termination algorithm (see section 2.3.3), which is why
there are errors for some values of α for the top 10 nodes.

α Iterations # Wrong

0.85 29 0

0.86 15 1

0.87 15 0

0.88 13 0

0.89 12 0

0.90 11 0

0.91 11 0

0.92 10 0

0.93 15 7

0.94 13 7

0.95 15 8

Table 1: Different α’s and resulting number of iterations and errors.
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We noticed that between α = 0.87 and α = 0.92, there were no errors in the top 10
nodes, and it took about the same or fewer iterations than α = 0.85. For run 4, we
decided to use α = 0.89, somewhere in the middle.

However, as can be seen by the change between run 3 and run 4, α 6= 0.85 actually
made the algorithm converge more slowly, and we had more errors! We concluded that
increasing α does not actually work well for our algorithm.

2.3 Stopping Criterion

2.3.1 Introduction

We require a stopping criterion to ensure that our PageRank algorithm does not run
forever. The assignment imposed a limit of 50 iterations, but in order for the algorithm
to run faster, we want it to converge sooner to the correct result.

At first, our algorithm stopped once the residuals (the differences in ranks for each node
between the previous iteration and current iteration) were all below a certain threshold.
Once this worked, we refined the stopping criterion such that it would terminate the
algorithm early, sacrificing some accuracy. We chose to sacrifice just the right amount
such that the penalties that resulted were less than the time saved by terminating early.

2.3.2 Residuals

We started with finding residuals of the ranks. At each iteration, we stored both the new
and old absolute PageRanks, and if the sum of the residuals was less than some ε (in our
case, 0.01), we consider the PageRanks to be ”stable” and terminate the algorithm. If
we define Pold to be the old PageRank and Pnew as the new PageRank, then our equation
is as follows:

residuals =
N∑
i=1

(Pold(i)− Pnew(i)) ≤ ε

On both the Caltech web graph and the G(n, p) graph, we noticed that setting ε = 0.01
seemed reasonable, and the results converged within 30 iterations. Setting ε any smaller
did not make much sense because the improvement tapers off as the number of iterations
increases.

2.3.3 Stability of Relative Ranks

While the residuals allowed us to terminate with good rankings, the algorithm ran for
too many iterations. We printed the ranks of each node at each iteration, and noticed
that the top 15 nodes’ ranks became stable after a certain point, as shown in Figure 3
(which only graphs the top 10 nodes for a clearer view).
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Figure 2: Residuals of the PageRanks for nodes in the Caltech web graph.

Figure 3: Ranks of the eventual top 10 nodes for the Caltech web graph.

Taking advantage of this, we rewrote the stopping criterion such that the algorithm
would stop after the top 15 nodes remained the same between two successive iterations.
This is not perfect, though, as the top 15 may remain constant for some number of
iterations, then change later on, as can be seen in Figure 4. However, since we were
optimizing for speed, this was acceptable, as we would swap one or two places at most,
sacrificing a smaller penalty for a bigger increase in speed.

7



Figure 4: Zoomed-in view of the ranks of the top 10 nodes in the Caltech web graph. The labels
are the node IDs.

2.4 Optimizing for Graph Structure

2.4.1 Sparsity

The graphs in the test data (as well as the grading data) were sparse graphs. That is,
there were many nodes that had very few to no outlinks or inlinks. This means that we
could have pruned the input graph to remove such nodes, since they would not contribute
to the PageRank calculations much. However, we decided that the initial overhead of
pruning of the graph would be much greater than the benefits from pruning.

2.4.2 Heavy-tails

Since the Caltech web graph is heavy-tailed (and likely at least one of the testing data
sets), we implemented our stopping criterion to take advantage of this. If a graph is
heavy-tailed, then the top few nodes will have much larger PageRanks than the rest of
the nodes. Therefore, our stopping criterion of stability (section 2.3.3) works because
once the top few ranks are stable and do not change, we do not expect the rank of
some lower-ranked node to suddenly jump up. Assuming this, we were able to make our
algorithm relatively fast.

2.4.3 Clustering

Finding the cluster coefficients of a node might help us find the PageRank of the node
faster, because a node with higher clustering coefficient likely has many inlinks from
which to receive PageRanks. However, we figured that calculating the clustering coeffi-
cient for each node would be costly and not worth the possible improvement.
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2.5 Optimizing on EC2

There were some settings that could change the speed of our algorithm, namely, setting
the number of map and reduce tasks. Amazon recommends a ratio of 2:1 map versus
reduce tasks. Since we are running 10 instances in the grading set, we chose 20:10 as
our ratio of mappers to reducers.

When testing with the Caltech web graph, we noticed that it took longer running 20:10
(20 mappers, 10 reducers) than it did to run 1:1. This conclusion may not be accurate
because throttling occurred and our time measurements may have been wrong. However,
we decided this was because of the overhead required to allocate 20:10 tasks, as well as
the fact that we were running one instance of MapReduce when testing.

3 Runs

1.
02/10/13 Stopping criterion: Residuals, with ε < 0.01
FAILED Tasks: 4:4 PageRank, 1:1 process

Our first run was unsuccessful. We incorrectly assumed the format of sorting on
Amazon EC2. We knew Amazon sorted keys only, and nothing within the key.
However, when testing locally, our inputs were keys separated by tabs, so our
sorting was a little off. As a result, our algorithm terminated prematurely and
errored out.

We also incorrectly assumed that specifying 1 : 1 for the process MapReduce would
ensure that Amazon only allocated 1 map and 1 reduce task for the process step.
This was not the case, and when we ran with 4 : 4 for the PageRank step, Amazon
insisted on having 4 process map tasks. At this point, we realized that Amazon
recommends a ratio of 2 : 1 map to reduce tasks for the m1.small instance on
EC2, so we moved all the code from process-map.py to process-reduce.py such
that the process reduce step would definitely happen in one task.

2.
02/11/13 Stopping criterion: Residuals, with ε < 0.01
1:55:43 + 0:00:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 1:55:43 Changes: No assumption of one process map task.

After correcting our code for the incorrect assumption that the process MapRe-
duce only runs a single map task, everything worked! However, our code ran for
much longer than we expected. The undergraduate TA’s code at this point took
1 hour, and ours was twice as long. We figured that the stopping criterion needed
improvement so the code would terminate earlier.
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3.
02/12/13 Stopping criterion: Stability of top 15 pages
0:34:51 + 0:01:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:35:51 Changes: No assumption of one process map task.

Since we already had an algorithm that gave correct code, our next task was to op-
timize it. We looked at how the top 15 ranks changed on the Caltech web graph,
and decided to make our stopping criterion based on the changes of the top 15
ranks. If they did not change for two rounds, then we terminate the algorithm.
Although this may not necessarily return the right result, it would be fast, and
the number of incorrect nodes would be small so the penalties would be small as
well. As we can see, this was true, as our algorithm took 1

4 of the time and there
was only one node (probably the 10th place) that was wrong!

4.
02/13/13 Stopping criterion: Stability of top 15 pages
0:39:14 + 0:10:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:49:14 Changes: α = 0.89.

Oops! It turns out that having α = 0.89 does not work for the test data set. We
decided to go back to having α = 0.85.

5.
02/13/13 Stopping criterion: Stability of top 12 pages
0:33:14 + 0:01:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:34:14 Changes: α = 0.85; compare top 12 ranks

We figured that comparing only the top 12 ranks for stability instead of the top
15 would be faster. In fact, it was! However, it was only a minute faster, so we are
not sure if it is due to the algorithm or Amazon EC2 having a lower load at that
point.

6.
02/14/13 Stopping criterion: Stability of top 11 pages
0:33:32 + 0:01:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:34:32 Changes: Compare top 11 ranks

In order to cut more time, we decided to make the stopping criterion even stricter.
This means that we would only compare the top 11 nodes for stability, and stop
when they remained the same for two rounds. However, it did not result in any
improvement in time.

7.
02/14/13 Stopping criterion: Stability of top 10 pages
0:31:19 + 0:01:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:32:19 Changes: Compare top 10 ranks

It seemed that the changes to the stopping criterion were not getting us anywhere.
We decided this time to optimize the code itself. We decided that instead of out-
putting every node we see in pagerank-map, we keep a dictionary of these nodes
so there are fewer things to output. When testing locally with the Caltech web
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graph, the run time went from around 20 seconds to 2 seconds. However, it did
not seem to make much of a difference on Amazon.

8.
02/14/13 Stopping criterion: Stability of top 10 pages
0:39:22 + 0:00:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:39:22 Changes: α = 0.86

We decided to experiment with α again. It seems that α reduced our penalty, but
increased the runtime again. It seemed that no matter how we tinkered with α or
our stopping criterion, we could not get a runtime under 30 minutes!

9.
02/15/13 Stopping criterion: Stability of top 10 pages
0:29:31 + 0:01:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:30:31 Changes: α = 0.85; more efficient heap queue

Instead of trying to improve the stopping criterion, we decided that our code
needed to be more efficient. Before, we stored all of the nodes in a heap in order to
rank them. However, we figured that this was inefficient, as popping and pushing
onto a heap required O(log n) access. Instead, we decided to use a min-heap of
size 10 so we would only ever keep track of the top 10 nodes. This made a slight
improvement, but still not enough to get us sub-30 with the penalties.

10.
02/15/13 Stopping criterion: Stop after 9 iterations
0:28:17 + 0:02:00 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:30:17 Changes: No tracking of relative ranks

We changed the stopping criterion from tracking the stability of the top 10 ranks to
simply stopping after a fixed number of iterations. Our choice of 9 iterations was
somewhat arbitrary, as we had not tried this stopping criterion before, and had
no baseline to compare times to. The runtime decreased slightly, but the penalty
increased, so the improvement was not substantial.

11.
02/15/13 Stopping criterion: Stop after 5 iterations
0:31:28 + 0:24:30 penalty Tasks: 20:10 PageRank, 1:1 process
= 0:55:58 Changes: Stopping after 5 iterations instead of 9

Since even our very fast and strict stopping criterion still was not fast enough, we
decided to take a risk and have the algorithm stop after 5 iterations. Oops! This
was a bad guess, as we stopped extremely early and resulted with a large penalty.
What is strange though is that it took longer than running 9 iterations!
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4 Testing

4.1 Local Testing

4.1.1 Test Automation

To run our pagerank algorithm locally, we created a bash script to iterate through each
run, instead of having to manually type up the command each time.

#!/bin/bash

for ((i = 1; i <= $1; i++))

do

echo Step $i

python pagerank-map.py < output | sort -k 1,1 | python pagerank-reduce.py \

| python process-map.py | sort -k 1,1 | python process-reduce.py > output;

done

4.1.2 Erdős-Rényi Graphs

In order to test our algorithm on more data sets, we tried to generate random di-
rected graphs. Our first model was the Erdős-Rényi model. As discussed in class, this
model starts with n vertices, and forms any possible undirected edge with probability p.
This was done using ErdosRenyiGenerator in APGL (Another Python Graph Library).
Then, to make the edges directed, we made the edge go one way with probability p, the
other way with probability q, and both ways with probability 1− p− q.

However, when we tried running our PageRank algorithm on random Erdős-Rényi graphs
with several thousand nodes, the algorithm converged in every case in no more than 4
iterations. This contrasted the random Erdős-Rényi graph provided to us with only
100 nodes, which converged in 29 iterations. We realized that for very high number of
vertices, the degree distribution of the graph would not be heavy-tailed, meaning that
this model was not very accurate, and therefore not very good to use for testing.

4.1.3 Barabási-Albert Graphs

After some research, we found a better model to generate graphs with heavy-tailed degree
distributions, the Barabási-Albert Model. This model generated graphs with heavy-
tailed degree distributions using preferential attachment, which we also discussed in
class: starting with a central node, add nodes to the graph one at a time, attaching edges
preferentially to nodes with higher degree. We did this with BarabasiAlbertGenerator

APGL. We directed all edges from newly added nodes toward the existing nodes. Figure
6 shows a graph generated with model with 1000 nodes.
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Figure 5: Graph of the connections between 500 nodes in an Erdős-Rényi graph (p = 0.01).

Figure 6: Graph of the connections between 1000 nodes in a Barabási-Albert graph.

4.2 Testing on Amazon

4.2.1 Automated Script

We also wrote a script script.py that would automate sending jobs to Amazon EC2.
This script included the uploading and downloading of files.

4.2.2 Throttling

A problem that multiple teams had when testing on Amazon EC2 was throttling. This
occurred when polling Amazon for the job status, as well as anything that involved jobs,
such as submitting and adding steps. To solve this problem, we wrote a helper method
that accepted a function pointer as an input. If any throttling occurred, the method
would try running the function again until it succeeded.
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def run_cmd(func, args, action, sleep_time=10):

"""Runs the command, but handles throttling by Amazon.

If throttling occurs, sleeps for a specified time (default 10s).

Args:

func Function to call on.

args Arguments for the function call, as a tuple.

action Line to print out.

sleep_time Length of time in seconds to sleep if throttling occurs.

"""

while True:

try:

func(*args)

break

except EmrResponseError:

print action

time.sleep(sleep_time)

5 Conclusion

5.1 Final Results

Once we implemented the basic algorithm, our team focused primarily on optimizing
the stop criterion to improve our rankings. The three main aspects we considered were
the maximum difference in PageRank, the changes in relative ranks, and the number
of iterations. We found that stopping after the relative ranking of the top n nodes
stabilized was a more efficient method than waiting for the sum of the residuals to
become arbitrarily low, since it provided a mostly-correct result for significantly fewer
iterations. This method was also superior to choosing an arbitrary number of iterations,
since it took advantage of the heavy-tailed properties of the graph, and is thus more
algorithmically sound.

5.2 Suggestions for Next Year

There are a few suggestions that our team has on how to improve the Rankmaniac
assignment for next year:

• Provide students with more information about the Amazon setup. We spent some
time debugging due to Amazon using Python 2.5, and not knowing that Amazon
chooses the number of map tasks based on the input data, while the values set in
the num map and num reduce variables are only interpreted as lower bounds.

• Access to the Bash or Python script that uploads code to Amazon. This makes
testing easier so that we can focus on the algorithm rather than setting up on EC2.
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• Stricter penalties. The final round of runs involved teams just trying to reduce
the time of the algorithm with as little penalty as possible. The fastest way to
do so, directly limiting the number of iterations, no longer follows the MapReduce
paradigm, which is somewhat against the purpose of the assignment. It also tailors
the algorithm to the specific dataset, which is inappropriate.

• More representative grading datasets. Based on the pattern of parameter choices
and aesults from our Amazon runs, we conjectured that one dataset used for grad-
ing converged rather quickly and was likely generated from an Erdős-Rényi random
graph, which is not heavy-tailed. The second dataset, on the other hand, appeared
to be heavy-tailed but did not contain enough pathological features to really exer-
cise our algorithms.
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