
1

NanoDB+ Final Report

Angela Gong

Mike Qian
Kalpana Suraesh

June 7, 2012

CS 123, Spring 2012

1 General Overview

The goal of this project, spanning 10 weeks of the Spring 2012 term, was to implement
the grouping and aggregation functionality in NanoDB. Since it did not take too long to
implement grouping and aggregation, more functionality was added, such as the ability
to use HAVING clauses, as well as functions and utilities such as SHOW TABLES.

The code was written in Java and uses the git version control system. The repository is
located on the CMS cluster at /cs/courses/cs123/sp2012/nanodb‐grouping.git/.

2 Architectural Overview

We will highlight important classes and functions that we have changed or implemented
to support the new functionalities.

res/nanosql.g (sqlparse)

● Added parser support for DESCRIBE, GROUP BY, HAVING, LIMIT, and SHOW
TABLES, as well as explicit support for aggregate function calls.

● Syntax for aggregate functions is hard-coded to ensure correct parsing of
arguments and to avoid nondeterminism issues with regular functions.

functions/(Aggregate)?FunctionCall
● Enabled creation of function call objects during the query parsing phase that can

later be used to evaluate a function against a set of one or more tuples.
● Detects attempts to evaluate nested aggregates, which are disallowed by the SQL

standard.
functions/FunctionDirectory

● Completed support for function calls, including aggregates MIN/MAX, SUM/AVG,
STDDEV/VAR, COUNT/COUNT(*), and using DISTINCT.

plans/GroupingFactory
● Allows NanoDB to use either hashing or sorting to compute groups for evaluation

of aggregates. All GroupAggregateNodes should be instantiated using this class,
not directly.

2

plans/(Hashed|Sorted)?GroupAggregateNode
● GroupAggregateNode takes in a child node, a list of group by expressions, a list

of select values, and an optional HAVING expression. It extracts the aggregate
expressions, which can be retrieved with getAggregateExprs().

● getModifiedSelectValues() returns the select values with all the aggregate
function calls replaced by column values. getModifiedHavingExpr() does the
same for the (optional) HAVING expression.

● HashedGroupAggregateNode organizes groups by hashing tuples against the
grouping columns, and then calculates aggregate values for each group via calls to
the evaluate() method of the appropriate AggregateFunctionCall objects.

● SortedGroupAggregateNode organizes groups by sorting all the tuples according
to the grouping columns, and then calculates aggregate values for each group via
calls to the evaluate() method of each aggregate.

qeval/DPJoinPlanner
● Modified plan generation to include support for grouping/aggregation, including

the HAVING expression. Also allows composite expressions like a + MIN(b) and
MIN(a + b) via the GroupAggregateNode classes.

● Since aggregates are initially represented by AggregateFunctionCall objects in
the list of select values, a modified list with these expressions replaced by column
values is retrieved from the grouping/aggregation plan-node.

expressions/Expression class hierarchy
● retrieveAllExprs() returns all subexpressions categorized by type.
● retrieveExprsByType() returns all subexpressions of a given type.
● containsExpressionType() checks whether the expression has any sub-

expressions of the given type.
● replaceAllInstances() replaces all occurrences of a given expression with

another expression.
● Modifications enable support for composite expressions involving aggregates and

the HAVING expression.

PrettyTuplePrinter

● Added the print() function which prints all of the resulting tuples at once.
● Aligns columns (including right-aligning numerical data).
● Parameter limit in the constructor tells the printer to limit the amount of output

displayed, and offset is the offset from which tuples will start being printed.

commands/DescribeCommand

● addColInfo() adds information about each field in the table to describe it,
including its name, type, whether or not it allows null values, default values, etc.

● execute() gets column info from the schema and passes it to addColInfo().
commands/ShowTablesCommand

● checkExistence() makes sure that the list of tables exist and creates it if not.
● addTable() and removeTable() adds and removes a row, respectively, from the

table that contains all of the tables.

tests/TestAggregation, TestGroupBy, TestHaving, and TestGroupingAndAggregation

● Added tests cases for grouping and all types of aggregation with and without the
HAVING clause.

3

3 Main Challenges

3.1 Parser Issues

In getting the parser to recognize both standard and aggregate function calls, we ran
into some issues working with FunctionCall objects. The existing rule that recognized
function syntax expected a FunctionCall return type, but since AggregateFunctionCalls
comprise a different class of objects and do not simply extend the functionality of
FunctionCalls, we had to refactor aggregate recognition into a new parser rule and
explicitly specify the supported calls. While support for standard functions is specified
within the FunctionDirectory class, aggregates generally have the same syntax as
standard function calls and thus have to be hard-coded in order to avoid potential non-
determinism warnings.

3.2 Grouping Nodes

Initial tests appeared to show that both the sorted and hashed implementations of the
grouping/aggregation plan-node were working as intended. However, further digging
seemed to indicate that VARCHAR columns were not being properly sorted into groups.
This required a simple fix: we accidentally sorted using the wrong schema. Another
problem we ran into while trying to hash tuples was that TupleLiteral did not
implement the equals() or hashCode() methods, so there was no way to compare
partial tuples outside of the TupleComparator class. Our temporary fix involved
hashing the tuple’s string value; once we updated TupleLiteral, we changed the hash
implementation to use the tuple directly.

3.3 Implementing the HAVING Clause

For some time, we wanted to provide support for the HAVING expression in conjunction
with grouping/aggregation, but we couldn’t get it to work just as we couldn’t yet provide
support for composite select values involving aggregates such as a + MIN(b).
Eventually we modified the Expression class hierarchy to store a field that identifies
each expression’s type (e.g., AggregateFunctionCall, BooleanOperator, ColumnValue,
etc.), thus allowing us to continue referencing expression objects generically using the
base Expression class. All classes that extend Expression can also be analyzed in order
to extract all expressions of a given type. After this, we were able to compute aggregates
regardless of where they appear in the select values or HAVING expression.

3.4 Tests

We were very confused for a while because our tests kept failing, until we realized that
TupleLiteral had a constructor to create tuples with several NULL values, which we were
misusing by thinking it would create a tuple with a single integer value. We also had
some problems related to spacing in the test_sql.props file.

4

4 Checking Out and Building

4.1 Repository

Once git is installed on a machine, the repository can be checked out from the CMS
cluster using the command:
git clone username@login.cms.caltech.edu:/cs/courses/cs123/sp2012/nanodb‐grouping.git

The remote repository may be updated by first committing the changes to the local
repository using git commit, and then pushing to the remote via git push.

4.2 Building and Tests

The source code for NanoDB+ is located in the src/ directory, and can be automatically
built by running ant compile. Running ant clean will delete the build directory so
that all the files can be rebuilt from scratch.

Tests are run using the TestNG framework, and the files are located in the tests/
directory. They can be run using the command ant test, and the results can be viewed
at build/results/index.html.

4.3 Documentation

Documentation is created with Javadocs, and can be generated by running ant
javadoc after the source code has been built. The result is located at build/javadoc.
The javadoc index can be found at build/javadoc/index.html.

5 Features in Action

5.1 Starting up NanoDB+

Run NanoDB+ by typing into sh nanodb, ./nanodb, or nanodb into a shell after
building it using ant compile.

~shell>nanodb

Welcome to NanoDB. Exit with EXIT or QUIT command.

CMD>

5.2 Grouping and Aggregation

Simple grouping can be done on columns.

CMD> SELECT str FROM table_1 GROUP BY str;

5

+‐‐‐‐‐‐+

| STR |

+‐‐‐‐‐‐+

| asdf |

| blah |

| five |

| four |

| noky |

| okay |

| spam |

+‐‐‐‐‐‐+

Aggregate functions can be selected as well as part of the query.

CMD> SELECT str, SUM(num) FROM table_1 GROUP BY str;

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| STR | SUM(TABLE_1.NUM) |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| asdf | 5723.5 |

| blah | 123.4 |

| five | 123.4 |

| four | 40.1 |

| noky | 358.5 |

| okay | 1341.0 |

| spam | 95.0 |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

More complicated aggregate expressions involving arithmetic operations can be done.

CMD> SELECT str, id + AVG(num) FROM table_1 GROUP BY str, id;

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| STR | TABLE_1.ID + AVG(TABLE_1.NUM) |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| asdf | 5729.5 |

| blah | 124.4 |

| five | 129.4 |

| four | 45.1 |

| noky | 66.3 |

| noky | 298.2 |

| okay | 41.1 |

6

| okay | 1237.6 |

| okay | 70.3 |

| spam | 70.3 |

| spam | 102.7 |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

The HAVING clause may be used to filter the results of the GROUP BY expression.

CMD> SELECT str, SUM(id) FROM table_1 GROUP BY str HAVING SUM(id) < 3;

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| STR | SUM(TABLE_1.ID) |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| blah | 1 |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

5.3 Functions

An example of a function that can be run is computing SIN of a column. Other functions
can be run similarly.

CMD> SELECT SIN(a) FROM foo LIMIT 5;

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| SIN(FOO.A) |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| 0.5805375529616218 |

| ‐0.04355002626945846 |

| 0.07966873759898874 |

| ‐0.7392416009402618 |

| ‐0.9939616415067287 |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

5.4 Utility Commands

5.4.1 SHOW TABLES
NanoDB+ has the ability to show all the tables in the database. This command can be
seen in action by creating and dropping many tables, and seeing the changes in what
SHOW TABLES displays.

Upon first running SHOW TABLES in a clean database, the following output should
appear:

7

CMD> SHOW TABLES;

Empty set

A couple of tables can be created:

CMD> CREATE TABLE a (a INTEGER);

Created table: A

Table of tables initialized.

CMD> CREATE TABLE b (b INTEGER);

Created table: B

CMD> CREATE TABLE c (c INTEGER);

Created table: C

By running the SHOW TABLES command the tables can be seen.

CMD> SHOW TABLES;

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| Tables_in_NanoDB |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| A |

| B |

| C |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

If you drop a table, the list of tables will be updated accordingly.

CMD> DROP TABLE b;

CMD> SHOW TABLES;

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| Tables_in_NanoDB |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

| A |

| C |

+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

5.4.2 DESCRIBE Command
Using the DESCRIBE command, details about the parameters of the table are listed. This
can be run using the DESCRIBE <table_name> command.

First a table must be created.

8

CMD> CREATE TABLE b (

 > a INTEGER,

 > b VARCHAR(30),

 > c FLOAT

 >);

Created table: B

DESCRIBE <table_name> can then display the table's fields.

CMD> DESCRIBE b;

+‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐+

| Field | Type |

+‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐+

| A | INTEGER |

| B | VARCHAR(30) |

| C | FLOAT |

+‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐+

5.4.3 LIMIT Command
We can limit the amount of output that appears. For example we have a table with 1000
rows, but we only want to display the first 10 in the console.

We can see that there are 1000 rows in this table.

CMD> SELECT COUNT(*) FROM limit_demo;

+‐‐‐‐‐‐‐‐‐‐+

| COUNT(*) |

+‐‐‐‐‐‐‐‐‐‐+

| 1000 |

+‐‐‐‐‐‐‐‐‐‐+

Now we can limit the amount of output that appears.

CMD> SELECT * FROM limit_demo LIMIT 5;

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

| A | B |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

| 945 | lbps |

| 8055 | jst |

| 1263 | rgcgeaoel |

9

| 1003 | kizoebfgf |

| 7890 | c |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

We can also offset the amount of output that appears. For example, the command below
will display 3 after an offset of 1 (remember that it is 0-indexed).

CMD> SELECT * FROM limit_demo LIMIT 1, 3;

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

| A | B |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

| 1263 | rgcgeaoel |

| 1003 | kizoebfgf |

| 7890 | c |

+‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐+

