Distributed Shared
Memory (DSM)

Robert Gasparyan, Angela Gong, Judson Wilson

What 1s DSM?

» Physically separate memory addressed as one
shared address space
« Memory shared on page-by-page basis

CPU CPU CPU CPU

I I I I

Memory Memory Memory Memory

! ¢ I !

Network

Virtual Memory

Result

Thread

Thread » Thread <—— Thread Thread

CPU CPU CPU CPU

« Make use of multiple machines
- Manage dependencies

DSM: Simple Interface

Shared
X = 5; Memory print X;
// Outputs 5
Thread < > < > Thread

CPU CPU

Consistency Model

lock(1l);
X =1;
Y = 2;
unlock(1l); Shafed
Region
Thread R/W
A
Local

CPU Memory

Shared
Region

R/W

Local
Memory

lock(1l);

print X; °?
print Y; ?
unlock(1l);

Thread
B

CPU

Release Consistency

» Critical sections protected by same lock
execute sequentially

» All changes from previously protected regions
guaranteed to be visible

» Saves network traffic because don't need to
synchronize until lock is released

Design and
Implementation

Deployment of Binaries

Server deployer> deploy A

/\Y\

/A Daemon

Daemon

Daemon

Daemon /A

/A
/ Future capability:

deployer> deploy gdb A

Master: Locks and Page Info

fork() ﬁ Master Vi

0:0
Worker 0 / v:28 Worker 3

0:3

\

Worker 1 Worker 2

Lock Requests

- Spawn thread
» Wait on pthread mutex_lock()
* Reply after acquired

Master ﬁ

;

Worker

Similar for unlock

Page Servers: Page Contents

- Background thread that distributes page data
upon request

- All workers have a page server Worker

Worker
— Worker

Patches

Implicitly locked memory can be smaller than a
page. Used diff-patches to merge modifications

Acquire Release

LSS T T NL VL NT VT NL N VTV

LN VL ST NTNT N N NN N .Y

LS T VT NLNLNT VT NL N VTV

Transparent Interface

Fault handlers, lock/unlock:

» lock() starts (lazy) Acquire
o mprotect to protect pages

« SIGSEGV fault to catch first read/write

o 1st: Upgrade to READ access — get latest version
o 2nd: Upgrade to WRITE — mark modified

* unlock() does Release
o Pull versions, merge modified pages, create new version

Transparent Shared Memory

Across Processes Across Network (DSM)
#include <pthread.h> #include <dsm.h>
// Shared region setup // Shared region setup
void *r; void *r = (void *)0x400000000000;
size t len = 4 * 1024; size t len = 4 * 1024;
r = mmap(NULL, len, ..., dsm_share(r, len);
MAP_SHARED | MAP_ANONYMOUS, ...); dsm_start(argc, argv);

int pid = fork();

// Do stuff // Do stuff

pthread_mutex_lock(&lock); dsm_lock(LOCK);
do_work(pid); do_work(machine number);
pthread_mutex_unlock(&lock); dsm_unlock (LOCK) ;

if (pid) wait(pid); dsm_wait();

Benchmarks

Benchmark Setup

« Compare performance of single machine

versus DSM.
ec2> ec2>
./dsm_daemon ./dsm_daemon
super-cool-comp>
./dsm_daemon
./dsm_deploy
ec2> ec2>
./dsm_deploy ./dsm_daemon

Single Machine Using DSM

Matrix Multiplication

Single Machine Using DSM

1/ms 1/ms

0.001 A 0.0005 A

0.005 0.0003 /

0.000 > 0.0000 >

0 5 10 15 20 0 5 10
Number of Cores Number of Cores

Word Count

» 32. [M32] How many of the genlex listings of (s, {)-combination strings an-y...a1a0
(a) have the revolving-door property? (b) are homogeneous?
33. [HIM33] How many of the genlex listings in exercise 31(b) are near-perfect?

34. [MS2] Continuing exercise 33, explain how to find such schemes that are as near
as possible to perfection, in the sense that the number of “imperfect” transitions ¢; ¢
c: # 2 is minimized. when s and ¢ are not too laree.

84. [HM27) I T = (¥,"), prove the asymptotic formula

¢
N . 3
N -N = T(+(F) +o(“°+”)) for 0 < N <T.
B5. [HMZ21] Relate the functions AV and NV to the Takagi function r{z).
86. [M20] Prove the law of spread/core duality, X~* = X°™.

42. A. Vershik [Functional Anal. Applic. 30 (1996), 90-105, Theorem 4.7) has stated
the formula o »
1~e” “ekf 1~e” ~cap /V/R
= e-ctite) Y I ot
where the constant ¢ must be chosen as a function of @ and ¢ so that the area of the
shape is n. This constant ¢ is negative if fp < 2, positive if 6¢ > 2; the shape reduces

Donald Ervin Knuth: The Art of Computer Programming: Generating all Combinations and Partitions

Word Count

Single Machine Using DSM

1/ms 1/ms

0.0012 A 0.0007 A

0.0062 0.0004

0.0000 > 0.0000 >
0 5 10 15 20 0 5 10

Number of Cores Number of Cores

Demo!

Conclusion

« We made transparent DSM!
» Focus: Correctness first, then scalability

« Tedious:

o C data structures
o Message passing / handling

Bonus: Correctness Test

Shared Buckets Private Buckets
1
+
| / Worker 0 '11 ~=
L5 B

Worker 1 ﬁ?.«

Invariant:
Sum Shared = Sum Private

Worker 2 '11 -

Bonus: Correctness Test

Nested Increment Nested Transfer

dsm_lock(LA); All Counts
dsm_lock(LC); . dsm_lock(LA);
++*C; ++C_priv; Serial temp = *A;
dsm_unlock(LC); Transfer *A = 0

++*A; ++a_priv; 1 Count dsm lock(LD);
dsm_unlock(LA); *D+=temp;

dsm_lock(LA);
++*A;
dsm_unlock(LA);
dsm_lock(LB);
__*B;
dsm_unlock(LB);

dsm_unlock(LA);
dsm_unlock(LD);

