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Introduction 
Distributed shared memory (DSM) allows physically separate 
memory (in multiple machines) to be addressed as one shared 
address space [1]. This enables applications to scale across 
multiple machines while preserving the shared-memory 
interface of a single machine. We implemented a DSM system 
in userspace with a familiar, transparent interface, which is 
both correct and scalable. 
 
Consistency Model 
The most common method for memory synchronization is the 
use of mutual exclusion locks (mutexes). We use release 
consistency [2] semantics to provide the guarantees needed for 
this model. Mutexes are acquired from a master server, then an 
acquire operation is performed to protect memory pages so that 
upon the next access a fault handler fetches the latest version 
of the data. Unlocking is preceded by a release operation, which 
fetches the latest version of the pages (discussed below), applies 
any local changes, and increments each page version. When 
using these mutex locks, any memory modifications in a critical 
section that precedes the current critical section (guarded by 
the same locks) will be observable. 
 
Note that such mutexes do not communicate to the system 
“what”, if any, memory they are protecting, so release and 
acquire apply to all pages. Also, the protected memory objects 
may be on the same page as objects protected by other locks, 
so we use difference-based patching to infer sub-page 
modifications. On release, we patch our local differences on top 
of the most recent page version, which must be fetched if there 
are new modifications. 
 
Interface 
The following code illustrates use of the interface for a simple 
program which does only 1 locked operation: 
 

dsm_share(shared_region_addr, length); 
dsm_start(argc, argv); // Args from deployer 
... 
dsm_lock(LOCK_A); 
/* Use memory protected by LOCK_A */ 
dsm_unlock(LOCK_A); 
... 
dsm_wait(); // Wait until others finish 

 
Figure 1. Extra code needed for DSM to work. 

 
Only 3 calls are needed for setup and teardown. Memory 
sharing is completely transparent, and locking calls are similar 
to those used in any threaded application with shared memory. 
 
 
* See the following pages for test and benchmark results. 

Application Deployment 
We've created an easy-to-use deployment system that 
distributes a program binary to all machines and allows 
successive deployment of different programs. A deployment 
server is started at one machine, and daemons that connect to 
the server are started on all other machines. The library takes 
care of packaging up binaries and sending them off to the 
daemons to be executed. 
 
Transparent Memory Consistency 
To update memory contents and track modifications 
transparently, the mprotect interface is used to protect pages. 
Upon an acquire operation, any unprotected pages are 
protected from access. A SIGSEGV fault causes a page to 
upgrade to read access after fetching the latest data. A further 
fault indicates a write, so protection is lifted and the page is 
marked as modified. Release operations do versioning 
operations, clear the modified state, and write protect. All 
visible data synchronization is done within fault handlers, 
lock/unlock and acquire/release calls. 
 
System Organization 
Our system involves several networked processes, one of which 
is the master, and the rest which are application workers (see 
Figure 2). From the application thread, workers make requests 
to the master server to acquire a lock and discover and updated 
page versions. They get the latest page data from other 
workers’ “page servers”, a background thread that serves page 
data requests from other workers (see Figure 3). Page data 
fetching and version updatings require the workers to message 
the master for version info, and page servers for data. Lock 
requests received at the master spawn threads which acquire a 
corresponding pthread_mutex_lock before responding. 
 
Communications 
The master server and page servers maintain TCP connections 
to every worker to receive requests. The servers block using 
epoll to wait for messages from any connection. Messaging is 
done through our msg system which abstracts TCP data 
streams into distinct message units, coalescing reads as needed. 
 
Conclusion 
We implemented a system that provides transparent memory 
synchronization using a standard mutex lock model. We 
demonstrated that it operates correctly. Due to the short 
duration of this project, we were unable to make many 
scalability enhancements we desired, and instead focused on 
correctness first. Also, we were originally going to intercept 
standard library interfaces for transparency, but found this not 
to be useful for our final model. 
 



Correctness Test 
To test correctness of our system, we made a DSM application 
called “lock_races” which randomly chooses between a set 
of 11 operations that each modify 2 shared counter-variables 
(out of 4 total, spanning 2 pages), each protected by their 
own lock. The locking order is composed in different ways, 
including nested locks, maintaining a discipline to prevent 
deadlock. Equal counts are added to shared variables and 
corresponding local counters, or “moved” between the two 
shared counters. Two example operations appear below, 
where *A, *B, *C, and *D are the shared variables, and 
a_counts, b_counts, c_counts, d_counts are the local 
counters: 
 

 ... 
 case 2: 
   dsm_lock(LA); 
   dsm_lock(LC); 
   ++*C; ++c_counts; 
   dsm_unlock(LC); 
   ++*A; ++a_counts; 
   dsm_unlock(LA); 
   break; 
 case 3: 
   dsm_lock(LA); 
   dsm_lock(LD); 
   temp = *D; 
   *D = 0; 
   dsm_unlock(LD); 
   *A+=temp; 
   dsm_unlock(LA); 
   break; 
 ... 

 
These operations should maintain the invariant that the sum 
of the shared counter variables equals the sum of ALL the 
local counter variables across all workers. 
 
The test was run using 3 workers doing 10,000 operations 
each. Afterwards, we verified the invariant was maintained, 
indicating that the system appears to correctly provide the 
desired semantics and is deadlock free. This procedure 
unearthed many bugs, often in conditions that we assumed 
would be bug free. All were found and fixed. 
 
Benchmarks 
We ran two benchmarks with and without our DSM library 
for performance comparisons. Our setup for benchmarking 
without DSM is a single machine with 20 CPUs, 64 GB of 
RAM, running on Ubuntu 14.04. Our DSM setup is on 10 
Amazon EC2 m3.medium instances running Ubuntu 12.10, 
each with 1 CPU and 3.75 GB of RAM. We plot the inverse 
of completion time, which is effectively the total rate of work 
completion. 
 
 

Matrix Multiplication 
Matrix multiplication is computationally intensive and ideally 
has linear speedup as the number of processors increase. We 
implemented the most naive  multiplication algorithm 
so we could associate speedups directly with the number of 
processors instead of with clever speedups and blocking found 
in better multiplication algorithms. See Figures 4 and 5. 
 
Word Count 
Our other benchmark was a simple word count on a large 
corpus. This is an I/O-bound process that would see a benefit 
if run on multiple machines. See Figures 6 and 7. 
 
Analysis 
Our results are quite interesting. We notice on a single 
machine that matrix multiplication stops scaling after about 
9 cores. This is probably because the operations are saturating 
the memory bus or there is system call-related contention, so 
that more CPUs doesn't actually improve anything. We 
suspect this is due to the network latency -- the overhead of 
10 machines communicating with each other over the Internet 
masks any improvement in speed due to DSM. We had to 
scale down the size of the matrices on our Amazon tests, for 
reasons that we have not yet been able to investigate. Larger 
matrices should lead to more computation per unit network 
traffic, and yield better results. 
 
As described earlier, word count is IO-bound and we see this 
in the single-machine graph. After about 6 CPUs, the runtime 
of word count is pretty much constant. This is because each 
core is competing with each other for read locks, and thus 
having more cores doesn't allow quicker file reads. On the 
other hand, word count scales very well with our DSM library. 
This is because each machine can read the files separately 
without overrunning each other. 
 
Generally speaking we were focused on correctness over 
scalability - a terribly broken system is worse than one which 
does not perform well. There are many places we can improve 
scalability in the future. We found that the C standard library 
is difficult to use for such purposes, because it lacks basic 
things such as hash maps, and efficient parallel socket 
communications code tends to have many lines of text to do 
what would seem like simple tasks. Such issues forced us to 
make compromises, given our limited time. 
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Figure 4. Matrix multiplication on single machine 
without DSM. 

Figure 5. Matrix multiplication using distributed 
shared memory. 

Figure 6. Word count on single machine without DSM. Figure 7. Word count using distributed shared memory. 
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Figure 2. Workers connect to the master server to for 
lock requests and page version number synchronization. 

Figure 3. Page server running on a worker serves 
requests for pages owned by this worker. 
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