
Transparent Distributed Shared Memory Library
Robert Gasparyan, Angela Gong, Judson Wilson

Introduction
Distributed shared memory (DSM) allows physically separate
memory (in multiple machines) to be addressed as one shared
address space [1]. This enables applications to scale across
multiple machines while preserving the shared-memory
interface of a single machine. We implemented a DSM system
in userspace with a familiar, transparent interface, which is
both correct and scalable.

Consistency Model
The most common method for memory synchronization is the
use of mutual exclusion locks (mutexes). We use release
consistency [2] semantics to provide the guarantees needed for
this model. Mutexes are acquired from a master server, then an
acquire operation is performed to protect memory pages so that
upon the next access a fault handler fetches the latest version
of the data. Unlocking is preceded by a release operation, which
fetches the latest version of the pages (discussed below), applies
any local changes, and increments each page version. When
using these mutex locks, any memory modifications in a critical
section that precedes the current critical section (guarded by
the same locks) will be observable.

Note that such mutexes do not communicate to the system
“what”, if any, memory they are protecting, so release and
acquire apply to all pages. Also, the protected memory objects
may be on the same page as objects protected by other locks,
so we use difference-based patching to infer sub-page
modifications. On release, we patch our local differences on top
of the most recent page version, which must be fetched if there
are new modifications.

Interface
The following code illustrates use of the interface for a simple
program which does only 1 locked operation:

dsm_share(shared_region_addr, length);
dsm_start(argc, argv); // Args from deployer
...
dsm_lock(LOCK_A);
/* Use memory protected by LOCK_A */
dsm_unlock(LOCK_A);
...
dsm_wait(); // Wait until others finish

Figure 1. Extra code needed for DSM to work.

Only 3 calls are needed for setup and teardown. Memory
sharing is completely transparent, and locking calls are similar
to those used in any threaded application with shared memory.

* See the following pages for test and benchmark results.

Application Deployment
We've created an easy-to-use deployment system that
distributes a program binary to all machines and allows
successive deployment of different programs. A deployment
server is started at one machine, and daemons that connect to
the server are started on all other machines. The library takes
care of packaging up binaries and sending them off to the
daemons to be executed.

Transparent Memory Consistency
To update memory contents and track modifications
transparently, the mprotect interface is used to protect pages.
Upon an acquire operation, any unprotected pages are
protected from access. A SIGSEGV fault causes a page to
upgrade to read access after fetching the latest data. A further
fault indicates a write, so protection is lifted and the page is
marked as modified. Release operations do versioning
operations, clear the modified state, and write protect. All
visible data synchronization is done within fault handlers,
lock/unlock and acquire/release calls.

System Organization
Our system involves several networked processes, one of which
is the master, and the rest which are application workers (see
Figure 2). From the application thread, workers make requests
to the master server to acquire a lock and discover and updated
page versions. They get the latest page data from other
workers’ “page servers”, a background thread that serves page
data requests from other workers (see Figure 3). Page data
fetching and version updatings require the workers to message
the master for version info, and page servers for data. Lock
requests received at the master spawn threads which acquire a
corresponding pthread_mutex_lock before responding.

Communications
The master server and page servers maintain TCP connections
to every worker to receive requests. The servers block using
epoll to wait for messages from any connection. Messaging is
done through our msg system which abstracts TCP data
streams into distinct message units, coalescing reads as needed.

Conclusion
We implemented a system that provides transparent memory
synchronization using a standard mutex lock model. We
demonstrated that it operates correctly. Due to the short
duration of this project, we were unable to make many
scalability enhancements we desired, and instead focused on
correctness first. Also, we were originally going to intercept
standard library interfaces for transparency, but found this not
to be useful for our final model.

Correctness Test
To test correctness of our system, we made a DSM application
called “lock_races” which randomly chooses between a set
of 11 operations that each modify 2 shared counter-variables
(out of 4 total, spanning 2 pages), each protected by their
own lock. The locking order is composed in different ways,
including nested locks, maintaining a discipline to prevent
deadlock. Equal counts are added to shared variables and
corresponding local counters, or “moved” between the two
shared counters. Two example operations appear below,
where *A, *B, *C, and *D are the shared variables, and
a_counts, b_counts, c_counts, d_counts are the local
counters:

 ...
 case 2:
 dsm_lock(LA);
 dsm_lock(LC);
 ++*C; ++c_counts;
 dsm_unlock(LC);
 ++*A; ++a_counts;
 dsm_unlock(LA);
 break;
 case 3:
 dsm_lock(LA);
 dsm_lock(LD);
 temp = *D;
 *D = 0;
 dsm_unlock(LD);
 *A+=temp;
 dsm_unlock(LA);
 break;
 ...

These operations should maintain the invariant that the sum
of the shared counter variables equals the sum of ALL the
local counter variables across all workers.

The test was run using 3 workers doing 10,000 operations
each. Afterwards, we verified the invariant was maintained,
indicating that the system appears to correctly provide the
desired semantics and is deadlock free. This procedure
unearthed many bugs, often in conditions that we assumed
would be bug free. All were found and fixed.

Benchmarks
We ran two benchmarks with and without our DSM library
for performance comparisons. Our setup for benchmarking
without DSM is a single machine with 20 CPUs, 64 GB of
RAM, running on Ubuntu 14.04. Our DSM setup is on 10
Amazon EC2 m3.medium instances running Ubuntu 12.10,
each with 1 CPU and 3.75 GB of RAM. We plot the inverse
of completion time, which is effectively the total rate of work
completion.

Matrix Multiplication
Matrix multiplication is computationally intensive and ideally
has linear speedup as the number of processors increase. We
implemented the most naive multiplication algorithm
so we could associate speedups directly with the number of
processors instead of with clever speedups and blocking found
in better multiplication algorithms. See Figures 4 and 5.

Word Count
Our other benchmark was a simple word count on a large
corpus. This is an I/O-bound process that would see a benefit
if run on multiple machines. See Figures 6 and 7.

Analysis
Our results are quite interesting. We notice on a single
machine that matrix multiplication stops scaling after about
9 cores. This is probably because the operations are saturating
the memory bus or there is system call-related contention, so
that more CPUs doesn't actually improve anything. We
suspect this is due to the network latency -- the overhead of
10 machines communicating with each other over the Internet
masks any improvement in speed due to DSM. We had to
scale down the size of the matrices on our Amazon tests, for
reasons that we have not yet been able to investigate. Larger
matrices should lead to more computation per unit network
traffic, and yield better results.

As described earlier, word count is IO-bound and we see this
in the single-machine graph. After about 6 CPUs, the runtime
of word count is pretty much constant. This is because each
core is competing with each other for read locks, and thus
having more cores doesn't allow quicker file reads. On the
other hand, word count scales very well with our DSM library.
This is because each machine can read the files separately
without overrunning each other.

Generally speaking we were focused on correctness over
scalability - a terribly broken system is worse than one which
does not perform well. There are many places we can improve
scalability in the future. We found that the C standard library
is difficult to use for such purposes, because it lacks basic
things such as hash maps, and efficient parallel socket
communications code tends to have many lines of text to do
what would seem like simple tasks. Such issues forced us to
make compromises, given our limited time.

References
[1] Nitzberg, B. & Lo, V. (1991). Distributed Shared Memory:
A Survey of Issues and Algorithms. Distributed Shared
Memory-Concepts and Systems. (pp. 42-50).

[2] Gharachorloo, K., et al. (1990). Memory consistency and
event ordering in scalable shared-memory multiprocessors.
ACM. (Vol. 18, No. 2SI, pp. 15-26)

Figures

Figure 4. Matrix multiplication on single machine
without DSM.

Figure 5. Matrix multiplication using distributed
shared memory.

Figure 6. Word count on single machine without DSM. Figure 7. Word count using distributed shared memory.

0

0.0002

0.0004

0.0006

0.0008

0.001

1 3 5 7 9 11 13 15 17 19

1/
m

s

Number of Cores

0

0.0002

0.0004

0.0006

1 3 5 7 9

1/
m

s

Number of Cores

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 3 5 7 9 11 13 15 17 19

1/
m

s

Number of Cores

0

0.00002

0.00004

0.00006

0.00008

0.0001

1 3 5 7 9

1/
m

s

Number of Cores

Figure 2. Workers connect to the master server to for
lock requests and page version number synchronization.

Figure 3. Page server running on a worker serves
requests for pages owned by this worker.

Master

Worker

Worker Worker

Worker
Worker Worker

Worker

Worker

PS

